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A NEW STOCHASTIC ANALYSIS OF CHEMICAL KINETICS
by
John P. Lehoczky*
Department of Statistics
Carnegie-Mellon University
i Pittsburgh, PA 15215
ABSTRACT
A new approach to the formulation and analysis of stochastic
models of chemical reactions 1s presented. Unimolecular, bimo-
lecular, and enzyme kinetic reactions are considered in the
irreversible and reversible cases. The methodoclogy is based on
diffusion approximations and represents the time evolution of the
reaction as the sum of a deterministic function and an Ornstein-
B Uhlenbeck process. s a result the marginal distributions are
t approximately Gaussian with relatively simple mean and covariance
parameters, and the dynamic behave 1s completely characterized.
The stochastic approach which uses stochastic difrerential equa-
| tions is a natural generalization of the deterministic approach
which uses ordinary differential equations.
* Research supported in part by Grant AFOSR 74-2642b rrom the
Alr Force Office of Scientific Research.
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1. Introduction

In this paper a new approach to the formulation and analysis
of stochastic models of chemical reactions is presented. Uni-
molecular, bimolecular, and enzyme reactions are considered in

both the irreversible and reversible cases. The reaction types

e

chosen for analysis are of a simple sort; however, this is fo
purposes of exposition only, and the methodology can be easily

extended to very complicated reactions. The results developed

obtained by other methods. The survey of MtQuarrie[

provides an excellent summary of such results.
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to chemical kinetics typically treats the concentrations of
various molecule types as a continuous time Markov chain with
specified transition rates. The transitions rates are used to
construct the Kolmogorov forward equations which characterize

the probabilistic behavior of the reaction. The exact solution
of these partial differential difference equations is intractable
except in the simplest case, so most authors are content to find
the first two moments of the process. Even this often leads to
differential equations whose solutions entail special mathematical
functions. 1In such cases it is difficult to gain an intuitive
understanding of the process. Furthermore, such an analysis is
very limited in that it provides information only about moments
and not the exact distribution. Moreover, it provides no in-
sight into the dynamic behavior or n-dimensional distributions

over time. Finally, as the reaction becomes more complicated




the analysis becomes more intractable and the 1
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The approach presented in this paper is approximate rather
than exact, but overcomes all of the difficulties which arise
with a stochastic analysis mentioned before. Furthermore it

provides a clear connection between the usual deterministic

w

analysis and a stochastic analysis. The method is called a

diffusion approximation, and examples of its use are given in

& = (51, (6]; (7]
the work of Gaver and Lehoczky -
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Schach[ . The approach is asymptotic in that it assum
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number of molecules involved in the reaction is large, although
in the work of Gaver and Lehoczky previously cited numerical

studies indicate excellent accuracy in small systems as well.
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he fundamental idea is based on the replacement of the discrete

e space and the Markov chain by
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a Markov process (in these cases a diffusion process). The for-
ward equations (in the Markov process case known as the Fokker-
Planck equations) are then formulated as Ito type stochastic
differential equations rather than thelr equivalent version as
partial differential equations. This formulation permits the
use of the Ito calculus for the manipulation of stochastic
differential equtions. The reader may consult Arnold[g] or
Gikhman and Skorokhod£1o] for a treatment of this theory. The
stochastic process 1is, in the asymptotic case, transtormed into
the sum of a deterministic process (invariably the same as the
process arising from a deterministic analysis of the system)

and a stochastic process (invariably an Ornstein-Unhlenbeck process).




F

This characterization of the system provides a full description

of the marginal distribution (Gaussian with specified mean and co-

variance functions) over time and, more importantly, of the n-

(o)

imensional distributions over time (Gaussian with specified
mean vector and covariance structure). The characterization
of the n-dimensional distribution functions is important for
the development of a proper statistical analysis of data
gathered from such a process say to estimate the rate constants
of the reaction. Since the stochastic process is added to the
deterministic process, the deterministic process may be thought
of as a first order approximation.

It is important to note that the methodology given in
this paper can easily be applied to very complicated reactions
including those with many compounds and steps. The results are
relatively simple and easily understood. Once the nature of the
Ornstein-Uhlenbeck process is understood, its appearance in
the description of many difference reactions allows for greater

insight into chemical processes.




Unimolecular Reactions

In this section, two simple unimolecular reactions are
considered. The two selected are taken from the review by
Mc Q uarrie in order to provide a basis of comparison tor

the diffusion approximation results with the exact resul

cr
)]

A. meaction A X9 p (111,[22],[13],[14]

If A(t) represents the number of A molecules present
at time t, then {A(t),t<0} 1is typically treated as a

continuous time Markov chain with transitions given by

Transition Rate

a > za-1 kadt + o(dt)

a2+ A 1 - kadt + o(dt) 2.4.1
all others o(dt)

where o(h)/h > o as h - o.
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For large values of A(o),
is very small (having a mean value of k/A(t)). Consequently,
over a short period of time many transitions will occur. It
is therefore reasonable to assume A(t+dt) - A(t) = dA(t) has
approximately a Gaussian distribution with mean E(dA(t)) =
-kadt + o(dt) and variance Var(dA(t)) = kadt + o(dt). One
may therefore represent A(t) as the solution of the Ito sto-

chastic differential equation (s.d.e. in the sequel)

dA(t) = -kA(t)dt + (kA(t))1/2 qu(t) 2.A.2

where {W(t), t>0} 1is a standard Wiener process and dW(t) =
Wit+dt) - W(t).
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The state space for the Markov chain was {0,1,...,A(0)}

originally and is now [0,A(o)]. The infinitesimal mean and

1

o]

re chosen to

U

variance in (2.A.2), -kA(t)dt and KkA(t)dt, w

match that of the original Markov chain keeping terms of order
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dt only. The approximation of the discrete process by a con-

¥ ; . 15
ess 1s made rigorous in the work ot Kurtz[ 21 and
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The increments are modelled as having a Gaussian
distribution in view of the central limit theorem. In the spirit

of the central 1limit theorem, it is natural to introduce another

stochastic pr {Xy(t), t>0} where Xylt) = (A(t) - Haft)/ﬁl/g
Wwith N = t a(t) 1is an arbitrary deterministic runction.
The X:I L will also be a diffusion and will satisfy a

s.d.e. which can be determined using Ito's Lemma [9,p.70] or

[1C,p-27], Specifically,

aX(E) = -Ni/e(d(t) + ka(t))dt - kXy(t)dt S
1/2 2l D

+ (ka(t) + o(N‘l/‘ )) dw(t).

N

Be Alo) e K w, the W0

term in (2.A.3) will explode
unless its coefticient is exactly 0. The function a(t) must,

therefore, be chosen to satisty the equation
a’(t) = -ka(t), a{o) = 1. 2.A. 4

Given that a(t) satisfies (2.A.4) and therefore equals

a(t) = exp(kt), one may let N > «» in (2.A.3) and conclude from
(16]

Barbour Theorem K that [XN(t), t >0} converges weakly to

{X(t), t>0} where X satisfies the s.d.e.
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-kX(t)dt + (k exp(-kt))

X(0)

I
O

The dirfuslon approximation consists of writing

1/2

A(t) = Na(t) + N3¢ (t) ~ Na(t) + N2x(t).  (2.A.6)

N

The stochastic process X 1is a nonstationary Ornstein-

Uhlenbeck process with mean O. Many facts about X can be

deduced frrom this characterization including the joint dist
2

" 3 : : : er
bution functions, the moments, and the Spectrum[g’Chapt

The X process will have mean O and variance Zt given to
be the solution of
Zt = —2k2t + kexp(-kt), ZC = 0. (2.A.7)
Equation (2.A.7) is readily solved to give
Zy = exp(-kt)(1 - exp(-kt)). (2.A.8)

The X process is Gaussian and X(t) has a Gaussian distri-
bution with mean exp(-kt) and variance exp(-kt)(1 -exp(-kt)),
thus A(t) will nave approximately a Gaussian distribution with
mean A(o)exp(-kt) and variance A(o)exp(-kt)(1 - exp(-kt)).

This approximation is clearly an accordance with the exact results
for this process, namely a Binomial (A(o),exp(-kt)) distribution,
as the central limit theorem guarantees the goodness of our
approximation even for small values of A(o). The difrusion
approximation (2.A.6) provides a complete description of the
dynamic behavior of the reaction rather than merely describing

the static or marginal behavior. The approximation is motivated
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to the work
concerning

been reported

by the large o) case, but the reader is referred
7
= - 5 o 7 : s 5
of Gaver and Lenc_:kv[’]’[ 1. (7] for more information
the accuracy of the method Excellent accuracy has
for values of A(o) as small as 20.
k
1 T
B Reversible Unimolecular Reaction A g Be g
e = ®
[171,[183},[19] 2
The irreversible reaction of section 2A is now

to the reversible case The forward and backward r

are Kk, and kg respectively. The transitions and

rates appropriate for such reactions are given by
Transition Rate

a > a+l kZ(B(o) + A(o) - 8)dt + o(dt)

& e B A 1 P +

2 a-1 K4 adt + O(dp)

a > a 1 - (k1a+'K2\

all others O(ut)

The A process can again be approximated by the s.d.e.

to
o]
~—
s
=
—~
(o]
~—r
I

A(t))dt - k,A(t)dt

i

(B(o) + A(o) - A(t))Y/ 2w, (t)

where Wq(t) and w2(t)
processes.

(A(t) - Na(t))/N
= B(o)/N.

1/2

N = Let a

and
o

A(o) + B(o).

and b

o Using Ito's

Lemma one may derive

for the X process to be

N

T —— e 2

(% A(t))

An XN process is again introduced where

2oBe 2

/24w, (t)

are independent standard Wiener

XN(t) =
= A(o)/N

the s.d.e.
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; dX (t) = -N™ (a’ t)-—kﬂ(i-a(t)\+»k13(t)) evivd
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T Sl o SUE
- \nl4-n2)Kw&t/&t+-(ﬂ2(l- a(t)) +ksa(t) + O(N )) iW(t)
. 1/2
Letting { > « , the coefficient of the N term mus
be 0, so a(t) must satisfy
a’(t) = -kja(t) +k, (1 -2a(t)), alo) = a4
i ‘ : 2.8.4
K, K,
a & \ &
a(t) = (a8, - ) o~k +Ex)t) + 7%
0 2 5 2
If a(t) is given as above, then XW(t>’ t >0} converges
weakly to {X(t), t>0}, a diffusion process which satisfies

I

{ 1 1 ¥ g [ 1 l2r
dX(t) -(ky +k YX(t)dt + (k, (1 -~a(t)+k,a(t)) / dw(t)

Il

X(o)

o

The X process is a nonstationary Ornstein-Uhlenbeck

process, and the diffusion approximation methodology treats Alt)

[¢/]

as being given by (A(o) + B(o))a( (A(o) + B(o))X(t). One

t} *
may easily compute the variance of the approximation process,

Zt, to be the solution of

i = -2(k, +k

¢ 1 2)2 + k

N o(1-a(t)) + k,alt), 2, = C. 2.B.6

O

The solution is given by

k1k2
=, = exp(-Kt)(1 - exp(-Kt)) —Eg— (exp(Kt) +1) 4

ct

+ (kg - k) (ag - ky/K)

where K = k14-k2.
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One may let t » o to deduce the equilibrium distribution
of A(t). In this case A(t) will have a steady state Gaussian
distribution with mean kg(A(o) + B(o))/K and variance

- , n 2 :
Klk (A(o) + B(o))/k“. These results extend those previously

ined for this reversible reaction. Of particular importance
is the characterization of the dynamic behavior in terms of an
Ornstein-~-Uhlenbeck process. The n-dimensional distribution
functions over time are thus given by an n-dimensional Gaussian
distributicn.

Many other unimolecular reactions can be treated in this

manner including the parallel first order and triangular reac-

1]‘

tions described by McQuarrie[ Instead we next treat the more

complicated nonlinesar situations.
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¥ Bimolecular Reactions

The bimolecular reactions to be considered are again summarized
: ) . il e s -
in the survey of McQuarr:e[ ]. The methodology of diffusion approxi-
eci

mations

1ly u

[47]

eful, because it provides simple characteri-
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zations of the

D

volution of these processes in terms of the sum of
a deterministic function and an Ornstein-Uhlenbeck process. This

is in sharp contrast to the results obtained from an exact analysi

w

Such results, when they can be obtained at all, invariably involve
complicated combinations of special mathematical t'unctions. Con-
sequently, it has been impossible to obtain any intuitive under-
standing of the stochastic nature of the chemical reaction.

k
A. The Irreversible Reaction 2A - B

A number of asymptotically equivalent stochastic models

¥ + 3~ ~
the concentration of A

w

re possibl

]

If A(t) represent

(47]

molecules at time t, then {A(t), t>0} is taken to be a

Markov chain with transitions and transition rates given by

Transition Rate

a~>a-2 dt + o(dt)

3.4.1
all others o(dt)

Using (3.A.1) and defining dA(t) = A(t+dt) - A(t), it is

easy to show E(dA(t)) = -kAa(t)dt/(A(o) + B(o)) + o(dt) and

2kAZ(t)

Var(dA(t)
A(o) + B(o)

dt + o(dt).
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One may therefore approximate the behavior of the A process using
+héa @ . d.e
Vil O “de T
o o 1/2
& \ o 8 PG (
! 2kA™(t) w
da({t) = = kA (T dt + ' jN(t) 3.A.2
N V
vhere. A(o) + B(o) = N
Following the methods of section 2, the process X, (t) =
v
A ()
202 g 0 P i y i
(A(t) - Na(t))/N is introduced, and using Ito's Lemma the
s.d.e. governing {Xx(t), t >0} 1s found to be
1/2 2y -
X (t) = ~H[a"(t) + ka®“{t))dt =~ caa(t)xw(t)dt
v L
2 _1/2, /2 e
+ (2ka“(t) + O(N Y)  dw(t)
1
The coefficient of H‘/2 must be identically O, thus a(t)
must satisfy :
)‘A¢4
Yo = alo
a’(t) = -ka“(t), a(o) = A(o)/(A(o) +B(0)) or a(t) = 4_; g T

Assuming a(t) satisfies (3.A.4) and N » o, [X (t),t>0]

converges weakly to ({X(t),t>0} which satisfies
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Once again the diffusion approximation gives a representation
for A(t) as (A(o) + B(o))(a(t) +X(t)) where a(t) 1is given
by (3.A.4). The X process is anonstationary Ornstein-Uhlenbeck

process with variance Zt satisfying

Iy = -bka(t)z, + 2ka®(t), £_ = 0. 3.A.6

t

! e R s . T ——————— e g~ ;
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Equation (3.A.6) 1is easily solved to give
By = 3 3(0)((1+a(o)kt))-L)/("ﬂ—ac‘r’f}“. 507

It follows that marginally A(t) will have approximately a

normal distribution with mean (A(o) + B(o))a(t) and variance
A(o) + B(o))Z, where a(t) and Z, are given in (3.A.%4) and

frcm its characterization as an Ornstein-Uhlenbeck process. The
simplicity of this characterization should be contrasted with the
ra]
|1J

It should be noted that the stochastic formulation given in

(D

presence of the A(o)+ B(o) factor in the denominator of the

transition rates. This factor is important when dealing with non-

rate reaction constants the same in the unimolecular and bimolecular

ases, whereas they would be different i1f the transition rates

were taken to be KA2(

t)dt. Second, it must be the case that as
the reaction proceeds, B molecules are produced and this makes it
difficult for the A molecules to be paired up. Using the model
without the A(o) + B(o) factor, the time for this reaction to be
50% complete, Ty, 1s 1/2A(o). 1If the initial number of A
molecules 1s doubled, the time for this reaction to be 75% com-

Plete, T is 5/8A(o). In fact the latter time should be larger

2!
than the former, since for the latter to be 75% complete, it must
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and nonlinear terms are included (see section 3C).
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be 50% c
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This take
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leads to a

i

clear contradiction,

mplete (at which

time

A3

additional

Unfortunately T4:=T

T, = 1/44(0).

m

4

1k

S0 T2

are

A(o) A
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mo

After reaching 504 com-

should

Throughout this

exceed

time units to reach 75%

lize all nonlinear transition rates by the number of molecules

This will equalize the transition rates

o1

[1], (18], [20]

and note that

when both linear

B molecules

B. The Irreversible Reaction A+ B > €

The quantity A(t) again represents the number of A
molecules at time t. We let A(o) + B(o) =N
B(t) = B(oj - A(o) + A(t) represents the number
present at time t. The transitions for the Markov chain {A(t),
t >0} are given by

all others

The approximate s.d.e.

Rate

ka(B(o) - A(o) + a)dt/N + o(dt)

1 -ka(B(o) - A(o) + a)dt/N + o(dt)

o(dt).

for the

DBy

A process is given by

aa(t) = -8t (B(o) - A(0) + A(t))dt + (KALEL (B(o) - (o) +A(t)))

diffusion process, and using Ito's Lemma the s.d.e.

{XN(t

The process

)» 20}

Xy(t) =

process is found to be

DB e

(A(t) -Na(t))/Nl/2 will also be a

for the

1/2

dw(t).
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The X process 1is nonstationary Ornstein-Uhl

@

nbeck, hence
the dynamic behavior can be easily deduced. The mean will be

O 7for all t, and the variance, Zt, will satisfy

>':t = -2k(2b-1 + 2a(t))z, + ka(t)(2b-1 + a(t)) 3.B.7

t

0
9

™M
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(@)

This equation can be easily solved using (3.B.6) to give

T

N T R — L
!
14
i iX(t) = N2 (a"(t) +ka(t)(2b -1 +a(t)))dt
- k(2b -1~+£a(t\)xw(t}1t 3.B.3
s
- / RPN L e L Sl
+ (ka(t)(2b-1+a(t)) + O(N )) dwW( t)
where b = B(o)/(A(0) + B(o))
Letting N +> o and assuming a(t) satisfies
L & 1 : / % 1 =
a (t) = -ka(t)(2b-1+a(t)), a(o) =1- 3.B.4
then {X,{(t)ht>0} converges weakly to {X(t), t>0} which
v e S
satisfies
,/ F -~ / = / e .-./2
dX(t) = -k(2b-1+2a(t))X(t)dt + (ka(t)(2b-1+a(t))) " dw(t)
X(0) = © 3.B.5
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~ a L o 2t
: / / 12 +2a(t) + 23
| [a(t)(8+al(t))] § ( y : (o)
’ e e 2 g
oL < 8a(t)(8+a(t)) 8a(o) (8 +alo))
+ ) a( 0< bl
b _2_le g a(ti a(o) b <
a(t) 6 +alo) b £ 1/2
\
g = 2b -1
The stochastic evolution of A 1is thus given in terms of
an Ornstein-Uhlenbeck process. For large values of A(o) and
B{(o), A(t) will be approximately normally distributed with
mean (A(o) + B(o))a(t) and variance (A(o) + B(o0))Z, where
a(t) and I, are given above. The simplicity of these result

1 2 &

¥ Reversible Biomolecular Reactions[*]’tlj]’[18]’[21]’[52]’[‘
The results given in sections 3A and 3B can be easily
extended to the case where the reaction is reversible. In the

o]
=

case

wn

a reversible reaction one may also calculate an equili-

brium or steady state distribution. As usual A(t) represents

the concentration of A molecules present at time t, and
the concentration of all other types of molecules can be deter-

mined from A(t) and the initial conditions. We consider four

types of reversible reactions

$ K K
I. A+ Bgstus 4 D III. 2Ag===C + D
\ X K
) 2 2
& K,
II. A+ Bg=mdC V. 2As==cC.

(=

Ul

31, [24]
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I'he method of diff'usion approximations outlined in the
us sections can be routinely applied to each of the four
reaction types glven above. The details of the derivation are
omitted as they are identical to those given in section 3A and
B. It is, however, important to note that all nonlinear tran-
sition rates will be normalized by N, the total number of
molecules present at time 0. This is especially important in
cases II and IV. If, in II, we assume A(o) and B(o)

are of a comparable order of magnitude, then the unnormalized

than the backward rate. Consequently, the reaction will, for
large values of A(c), be essentially equivalent to the irre-
versible reaction. The equilization of transition rates is
accomplished by normalization.

‘ne proces {A(t), t>0] is taken to be a Markov process

with appropriate transition rates. The diffusion approximation

/2 ()

methodology treats A(t) = Na(t) + N where N 1is the
number of molecules of all types at time O, a(t) 1is a deter-
ministic frunction, and X(t) is a diffusion process satistying

a s.d.e. We write

a’'(t) = fiae(t) - f2a(t) + rj, a(o) = a, 2.0:1
dX(t) = -g(t)X(t)dt + (h(t))l/de(t)
X(0) = 0, 3.0.8

and let a_ = A(o)/N, by = B(o)/N, o = C(o)/N, and d = D(o)/N.

~

We summarize below the detfinisions of Ty r2, fj, g, and h

for each of the rour types of reactions.
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e L 4 C z ) C &t o = i (o] O
X =K., k.{(b. ~a ) + k. k(e +a )
4 4 & c c O O*
:’ Kf\
21 - - K4 ko(e +4d_ +a ) —=(2c_+a_)(2d_+a)
&= E 1 & (% z O o/ O o’
IV -k, K k. (2c_+a )
i 2 AR 0’
g(t) h(t)
I k; b, = &, +2a(t)) Kia't)(bo- a_+a(t))
+ kK > +d_+2a -23/1: "/f" k8 (% & 4 a _a/t
- b Sl o) ) + kyley +a, -a(t))(d, +2,-2lt))
|
i3 k.(b.-a_+2a(t)) + k (t)(b_. - att)) k-{ec 48 —a(t))
1'% =% ) 2 Bl E) By = A ¥ BLN] ) * BolCo ™ By )
l
11T | 2k, a(t) 2k, 2% (t
| 2k ,25(6)
| s ‘A./'- d +8 -8&a(t 3 1 2 3 = altY¥Y(2d 7 =t
o\ C + o .~O .,)) :{E \_C 3.0 a t', )\ G t -‘\t))
IV 2k, a(t) + k, 2k, a“(t) + 2k.(2c_+a_-a(t))
¢ 2 A 2 (o) .
The mean of A(t) 1is obtainable as Na(t) where a(t)
is the solution of (3.C.1). The steady state is obtained Dby
solving (3.C.1) with a‘'(t) = 0 and a(t) = a. The variance
5 o
of A(t), Zgs is obtained by solving
Z = "2g<t)2 + Yl(t), Z = On 3-C05

In

t t

all cases A(t)

will be a Gaussian process.

This




(@8

characterization 1s especially appealing when compared with the

exact answers where the moments alone require complicated combi-

4, Enzyme Kinetic Models
The last class of kinetic models to be addressed are those
relating to enzyme kinetics. Two simple enzyme reactions are

studied, one which leads to the classical Michaelis-Menten or
Briggs~Haldane theory and a second which includes enzyme inhi-

bitors. It is the purpose of this section to provide a new

[¢]

stochastic analysis of these reactions one which may be compared

[25

\

to that given by Bartholomay and Jachimowski et al -
The stochastic process (now multivariate) will again be 2an
Ornstein-Uhlenbeck process. The moments of the reaction and the

n-dimensional distributions will be characterized exactly.

kl kB
A. 8 + E-——F(8E]>—-34P + E
kK
2
The simple enzyme reactlion given above gives rise to the
Michaelis-Menten or Briggs-Haldane theory which postulate on

intermediate [SE] complex. Let S(t) represent the substrate
concentration at time t, E(t) represent the enzyme concentra-
tion at time €, and C(t) and P(t) represent the concentra-
tions of enzyme-substrate complex and products at time t.
{(s(t), E(t)), t>0} 1is taken to form a Markov chain since

C(t) = E(o) -E(t) and P(t) = S(o) ~5S(t)-C(t).

Transition Rate
k, SE
(s,E) > (8-1,E-1) L7 4t + o(dt)
E(o)




Transition Rate
(continued) 481
(S+1,E+1) kz(E(o) - E)dt+ o(dt)
(S,E+1) kB(E(c) - E)dt+ o(dt)
i it k, SE
S S e + (k,+k;)(E(o) -E)]dt + o(dt)
-/ [ S ’
E(o)
all others ofat Y-
The transitions and rates given in (4.A.1) con be used
to give the s.d.e. representation of the reaction. Specifically
as(t) = -k, SLOELY) 4t ¢ 1 (E(o) - E(t))dt ,
i 2 4.A.2
E(o)
k, 5()E(t) |72 ( 1/2
R o SR et SRR S o)-—E(t))) dW,(t)
E(O) il 2 2
le(t)E(t) ,
dE(t) = ————— dt + k,(E(0) - E(t))dt + k5(E(0) - E(t))dt
E(o) =
k, S(t)E(t) L/2 Lo
o} e | AW AT} R LB = B(E)) W, (t)
1 2 2
E(0)
N (kB(E(o)-E(t)))l/edwﬁ(t).

We next introduce Xy (t) = (S(t) -Ns(t))/l\li/2 and Yﬂ(t) =

1/2

(E(t) - Ne(t))/N where N = E(o). The s.d.e.'s governing,

{fXN(t), YN(t)), t >0} can be easily deduced using the Lemma to be

axy(t) = -N/2(s’ (t) + Xk s(t)e(t) - ky(1 - e(t)))dt

- ky (s(t)Yy(t) +e(t)Xy(t))dt - ky¥y(t)de

1/2
-(kys(t)e(t) +o(N"2/2)) " “aw, (¢) 4oA.3

/2

1
+ (K, (1-e(t))+0(N"1/2))" "awy(t)

2




aty (t) = -N/2(e’ () +kys(t)e(t) - (k,+k;)(L-e(t)))dt

|
=
6}
cF
S
4]
P
o
e
4+
&
7 |
} A
N
N
2
=
> 3
~~
ct
-

/ 1/2
+ (kx(1-e(t)) + o(N"1/2yy di(t).-

The analysis proceeds by letting N - o and requiring

s(t) and e(t) to satisfy

8’ (t) = -k,s(t)e(t) + k(1 ~e(t))
i \ \ 2N i
4 A4
e’'(t) = -k,s(t)e(t) + ’k2-+k,)(1 -e(t))

Of course (4.A.4) can be augmented by the equation
c’(t) = kse(t)s(t) - (k2-+k3)(l -e(t)), and this system of dif-
ferential equations is now a2 normalized version of the Michaelis-
Menten equtions. The Michaelis-Menten theory can thus be thought
of as a first order approximation of the enzyme reaction. The
second order approximation arises from an analysis of the sto-
chastic term.

If s(t) and e(t) satisfy (4.A.4), then as N » =,
[(XN(t), YN(t)), t >0} converges weakly to {(X(t), ¥Y(t)), t>0}

which is a diffusion given by

dw, (t)
dX(t) | -A(t) X(t)) dt + B(t) {aw,(t) k5
d¥(t) 7(t) A (

where

X(o) Ty and
Y(o)




kle(t) kls(t) + kz
BB = lkje)  Kkjs(r) + K, + K,
g 5 ok
(e s(0e()? ey (1-e(0)) hiets
2 = {akps e ® Gy (L-e()))F (ky(1-e(0)))

The equation given by (4.A.5) is a nonstationary bivariate linear
equation. It is easy to show that the eigenvalues of é(t) have
strictly negative real parts, hence the process is Ornstein-Uhlenbeck.
The marginal distribution of (X(t),Y¥Y(t)) will be Gaussian with mean
(0,0) and covariance matrix L, given to be the unique nonnegative

definite solution of the matrix Riccati equation

~

: % T
le = "A®], - 1A () +BB., [, =0 bt

The above equation can be rewritten as follows. Let ol(t) =
Var(X(t)), oz(t) = Var(Y(t)), and clz(t) = Cov(X(t), Y(t)). Then

calling V() = (o;(t),0,,(t), 0,(t))T, we find

V(e) = -DV(E) + E., V(O) = 0 4.7
where
Zkle(t) 2(kls(t) + kz) 0
D =
- kle(c) kl(e(t) + s(t)) + k2 + k3 kls(t) + kz
0 2k1e(t) 2(kls(t) + k2 + k3)
and

kls(t)e(t) + kz(l-e(t))
F, = kls(t)e(t) + kz(l-e(t))
kls(t)e(t) + (k2 + k3)(1-e(t))




22
Equation (4.A.7) may be solved formally to give
E 1 u
Vit) = expl~ |, D, du) fo exP(Eufo D ds)du 4.A.8

which can be computed using standard numerical integration techniques.
The diffusion approximation methodology thus provides a complete
description of the enzyme reaction in terms of a bivariate Ornstein-
Uhlenbeck process. It appears that no closed form expressions are
available, so s(t), e(t), and Y(t) must be evaluated using numerical
integration. It is possible to obtain approximations by adopting the
Briggs and Haldane steady state assumption, ¢  (t) = 0. This
smplification allows for the derivation of certain closed form
expressions.
It should be noted that the stochastic description of this
enzyme reaction is valuable not only for the insight it provides
into the process, but also it is necessary for the development of a
proper statistical analysis of reaction data, say to estimate the
Michaelis-Menten constant (k2+k3)/kl. The analysis presented can be
easily generalized to far more complicated reactions including
reactions with several intermediate enzyme-substrate complexes,

several substrates, and reversible reactions.

k k k

B. Enzyme-Inhibitor Reaction.[27]E+S~~l*[ES]—§+E+P E+Ig:é;[EI]
k k
2 5

We conclude with a simple enzyme-inhibitor reaction. The
analysis of this system parallels that given in section 4A, except

that a higher dimensional process must be used. Again the diffusion




approximation analysis leads to a characterization in terms of a
multivariate Ornstein-Uhlenbeck process.

Define S(t),E(t), and I(t) to be the concentrations of
substrate, enzyme, and inhibitor at time t. If Cl(t) and Cz(t)
represent the concentrations of [ES] and [EI], then both can be
calculated from the initial conditions by Cz(t) = I(o) - I(t) and
Cl(t) = E(o) - E(t) - C2(t). {(s(t),E(t),I(t)), t>0} can be

treated as a Markov Chain with transitions and rates given by

Transition Rate
leEdt
(S,E,I)=—(S-1,E-1,1I) ——— + o(dt)
E(0)
(S+1,E+1,1I) k,(E(0)-E-C,)dt + o(dt)
2 : 4.B.1
(S,E+1,1I) k4 (E(0)-E-C,)dt + o(dt)
k,EI
G,E-1,I-1) - dt + o(dt)
E(D
(S,E+1,1I+1) kS(I(O)-I)dc + @(dt)

with C2 = I(0) - I,
We omit writing the approximate s.d.e.'s for
(S(£),E(8),I()). let Xg(t) = 6(t) - Ns(£))/N%, 7 (t) = (E(t) -
Ne(t))/N%, and Zzg(t) = (I(t) - Ni(t))/N® where N = £(0). An
asymptotic analysis indicates that the deterministic functions

s(t), e(t), and i(t) must satisfy

s’ (t) = -kl s(t)e(t) + k2(1-e(t) - io + 1(t))
e (t) = -k; s(t) e(t) + (k, + ky) (1-e(t) - i + i(£)) 4.8.2

i"(t) = -kye(t)i(e) + kg (1, - 1(t))

N —— T e G o g b e o = e ——
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where e(0) = 1, I(0)/E(0) = io, and Sy = S(0)/E(0O).
The stochastic noise process {(XN(t),Y (t),ZN(t)),tzO}
will converge weakly to {g(t), t>0} where y(t) = (X(t),Y(t),Z(t))T

and will satisfy
d U(e) = -éty(t)dt + §td Wit); o) = 0 4.B.3

with W(E) = (W) (£),W,(£),Wy(E), W, (£) W (e))T,

kle(t) kls(t) + k2 k2
Ly > kle(t) kl?(t) + kz + k3 "o k4i(t) -(k2-+k3 -ks) ;
0 k41(t) kae(c) + k5
g, () g, (t) 0 0 0
“t = gl(t) gz(t) 83(1:) 'ga(t) gs(t)
0 0 0 -g,(t) gg(t)

with g (t) = (ks(B)e(®)?, gy(t) = (k,(l-e(t) - 1+ i(e))F,
g4(0) = (ky(l-e(t) - i, + 1(0)))%, g () = (ke()i(e))*, and
(kge (£)i()) 2,

The eigenvalues of AL have strictly negative real parts,

gs(t)

hence the g(t) process is Ornstein-Uhlenbeck with mean 0. It

follows that g(t) will have a Gaussian distribution., The covariance
matrix at time t, Et’
solution of (4.A.6). The diffusion approximation then gives (S(t),

is given as the unique nonnegative definite

E(t), I(t)) to be aproximately E(o)(s(t),e(t),i(t)) +

G(o))% (X(t),Y(t),Z(t)) where (s(t),e(t),i(t)) iz given by (4.B.2),
and the stochastic part is specified by (4.B.3). It appears impossible
that s(t),e(t),i(t), and Et can be found in closed form; however,

one can easily use standard numerical procedures to compute them, It

- |
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o

is possible that further approximations similar to the Briggs-

Haldane steady state assumption can be invoked to obtain some

clo

over time will be given by a trivariate Gaussian distribution.
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